Research with a new level of insight
For over two decades, virtual medical simulators and physiological flow systems have been featured in a variety of publications as a key tool for medical device and procedural research and curriculum development to facilitate medical professionals.
Filter by Solution
Filter by Medical Speciality
Filter by Solution
Filter by Medical Speciality
Ischemic stroke is one of the leading causes of death and long-term disability in the West. Mechanical revascularization techniques are considered the standard of care for large vessel occlusive stroke. Traditional apprenticeship models involve doctors training their skills on patients. Simulation platforms have long been recognized as an alternative to this. There has however been very little robust assessment of the training outcomes achieved on some of these platforms.
To test the feasibility of an online, simulator-based comprehensive interventional radiology (IR) training curriculum in times of COVID-19-induced travel restrictions. A network of six VIST simulators (Mentice, Gothenburg, Sweden) was installed in six geographically different radiology departments. Two courses with six sessions each took place. 43 participants were recruited on a voluntary basis among local residents. The training sessions were conducted in real time with interconnected simulation devices and were led by experts in the field of IR on a rotational basis.
Endovascular simulation is a validated training method, allowing residents to improve technical skills with interventional equipment in a risk-free environment. The purpose of this study was to assess the utility and efficacy of supplementing the IR/DR Integrated Residency training program with a dedicated 2-year endovascular simulation curriculum.
To explore whether simulation-based endovascular training with focus on radiation safety could improve correct behavior without jeopardizing the learning of procedural skills.
This study assessed the effectiveness of simulation-based training for neuroendovascular interventions using primary and secondary catheters via a transradial approach (TRA). Five neurosurgical residents participated, using the Mentice Visit G5 simulator. Results showed significant improvements in task completion time and knowledge of catheter techniques. The training was rated highly useful by the participants, demonstrating that simulator-based training is effective in enhancing residents' skills in neuroendovascular procedures using TRA.
Simulators are increasingly used in the training of endovascular procedures; however, for the use of the Mentice vascular interventional system trainer (VIST) simulator in neuroradiology, the validity of the method has not yet been proven. The study was carried out to test the construct validity of such a simulator by demonstrating differences between beginner and expert neurointerventionalists and to evaluate whether a training effect can be demonstrated in repeated cases for different levels of experience.
We assessed the transfer of training (ToT) of virtual reality simulation training compared to invasive vascular experience training for carotid artery angiography (CA) for highly experienced interventionists but new to carotid procedures.
The example of university radiology/neuroradiology illustrates how high-tech angiography simulators can be used meaningfully in teaching, clinical training and research.
Rehearsing endovascular aortic aneurysm repair on patient-specific data is recent within virtual reality simulation and opens up new possibilities for operators to prepare for complex procedures. This study evaluated the feasibility of patient-specific rehearsal (PsR) and assessed operators' appraisal of the VIST-LAB simulator from Mentice.
This study evaluates a fully immersive simulated angiosuite for training and assessment of technical endovascular and human factor skills during a crisis scenario.
Interventional radiology (IR) is a growing field but is underrepresented in most medical school curricula. We tested whether endovascular simulator training improves medical students' attitudes towards IR.
Likewise work experience, heart rate variability (HRV) has repeatedly been correlated with improved performance under real life and simulator conditions. Using HRV as a correlate of workload, it is meaningful to assess the impact of work experience. To understand the impact of work experience on HRV metrics, we examined differences in HRV among experts and beginners during simulated endovascular neuroradiological procedures.
Improvement in performance as measured by metric-based procedural errors must be demonstrated if virtual reality (VR) simulation is to be used as a valid means of proficiency assessment and improvement in procedural-based medical skills.
Metric based virtual reality simulation training may enhance the capability of interventional neuroradiologists (INR) to perform endovascular thrombectomy. As pilot for a national simulation study we examined the feasibility and utility of simulated endovascular thrombectomy procedures on a virtual reality (VR) simulator.
Technical proficiency in carotid artery stent (CAS) procedures is paramount to ensure patient safety. If virtual reality (VR) simulation is to be used as a valid means for credentialing physicians for CAS procedures, the assessment parameters must be able to evaluate the performance during CAS and to differentiate level of CAS experience. The aim of this study was to validate assessment parameters of a commercially available VR simulator (VIST, Vascular Interventional Surgical Trainer, Mentice, Gothenburg, Sweden) during a CAS procedure in experienced interventionalists.
Simulator-based endovascular skills training measurably improves performance in catheter-based image-guided interventions. The purpose of this study was to determine whether structured global performance assessment during endovascular simulation correlated well with trainee-reported procedural skill and prior experience level.
Simulator-based teaching for coronary angiography (CA) is an attractive educational tool for medical students to improve their knowledge and skills. Its pedagogical impact has not been fully evaluated yet.
Many aspects of medical training take place on real patients in a live environment thus incurring risk. Apart from the obvious risks to patients there is the issue of X-ray exposure to both staff and trainees. Image quality used during interventional procedures is low to ensure minimum X-ray radiation dose. A virtual interventional system may be used to simulate the interventional cardiology training environment therefore reducing overall risk.
To compare objective fellow and expert efficiency indices for an interventional radiology renal artery stenosis skill set with the use of a high-fidelity simulator.
Virtual reality (VR) simulation has been suggested to objectively assess endovascular skills. The aim of this study was to determine the impact of cognitive training on technical performance of inexperienced subjects on a commercially available VR simulator (VIST, Vascular Intervention Simulation Trainer, Mentice, Gothenburg, Sweden).
Currently, training in interventional electrophysiology is based on conventional methodologies, and a paucity of data on the usefulness of simulation in this field is available.
To determine the value of an angioplasty simulation to differentiate the users based on their level of experience. To determine the perceived usefulness of an angioplasty simulation program.
Patient-specific rehearsal (PsR) is a new concept whereby a procedure can be rehearsed virtually using the exact patient’s anatomical data prior to performing the real procedure. The aim of this study was to ascertain if endovascular virtual-reality PsR simulation enhanced performance in real life. This was done by performing a systematic review following the preferred reporting items for systematic reviews and meta-analysis (PRISMA) guidelines.
Simulators are increasingly used in the training of endovascular procedures; however, for the use of the Mentice vascular interventional system trainer (VIST) simulator in neuroradiology, the validity of the method has not yet been proven. The study was carried out to test the construct validity of such a simulator by demonstrating differences between beginner and expert neurointerventionalists and to evaluate whether a training effect can be demonstrated in repeated cases for different levels of experience.